ناحیه بندی ضایعات ms در تصاویر mr

پایان نامه
چکیده

در بیماری(multiple sclerosis) ms ، سیستم ایمنی بدن به بافت اطراف فیبرهای عصبی (آکسون) حمله می کند و با تخریب قسمت هایی از میلین باعث ایجاد نقاطی به نام پلاک بر روی اعصاب می شود. تشخیص زودهنگام بیماری ms و برآورد حجم ضایعات، گامی مهم در فرآیند درمان این بیماری محسوب می شود. یکی از مهمترین وسیله های تشخیص و پیگیری پیشرفت بیماری msاستفاده از روش تصویربرداری تشدید مغناطیسی (mri) است. اما تشخیص و ناحیه بندی ضایعات ms (پلاک) در تصاویر mr به علت متفاوت بودن در شکل، اندازه و همچنین محل قرارگرفتن آن ها در مکان های مختلف، امری دشوار و زمانبر است. از این رو در سال های اخیر قطعه بندی اتوماتیک ضایعات ms در تصاویر mr مغزی با هدف تشخیص این بیماری به صورت گسترده ای مورد توجه قرار گرفته است. در حالت کلی استراتژی های ناحیه بندی اتوماتیک ضایعات ms به دو دسته نظارتی و غیرنظارتی تقسیم بندی می شوند. در دسته روش های نظارتی از اطلاعات تصاویر بخش بندی شده توسط پزشک و همچنین اطلاعات اطلس استفاده می شود و در دسته روش های غیرنظارتی ضایعات بدون نیاز به مرحله آموزش و به طور مستقیم بخش بندی می شوند. در این پژوهش سعی شده است که با استفاده ترکیبی از روش های نامبرده، از مزایای هر دو دسته بهره ببریم. هدف از این رویکرد ترکیبی، درنظر گرفتن تمامی اطلاعات مفیدی است که ما را در بخش بندی صحیح ضایعات ms یاری می نماید. در این پایان نامه ضایعات ms در طی سه مرحله مجزا و توسط سه دسته بند میدان مخفی مارکوف (hmrf)، قانون k نزدیک ترین همسایگی (knn) و ماشین بردار پشتیبان (svm) بخش بندی شده اند. انتخاب سه دسته بند مذکور بر اساس دقت تشخیص بالای آن ها در روش های پیشین، صورت گرفته است. در مرحله ی اول به کمک تطبیق تصاویر با اطلس آماری، اطلاعاتی اولیه درباره احتمال تعلق هر وکسل به کلاس بافت های مختلف بدست آمده است و در ادامه به کمک الگوریتم غیرنظارتی hmrf سه بافت اصلی مغز در تصاویر t1 بخش بندی شده اند که این کار با درنظرگرفتن دو کلاس دیگر برای وکسل های نواحی مرزی بافت ها انجام شده است. سپس ضایعات ms به کمک ماسک های حاصله از مرحله قبل و اعمال قوانینی برگرفته از اطلاعات بالینی در تصاویر flair شناسایی شده اند. در مرحله دوم با استفاده از دو روش نظارتی svm و knn و به کمک یادگیری از تصاویر بخش بندی شده توسط پزشک، ضایعات ms در دنباله تصاویرflair بخش بندی می شوند و در نهایت با تلفیق نتایج به روش رای اکثریت و اعمال شروطی بر روی آن ها یک بخش بندی با خطای کمینه حاصل می گردد. هدف ما در این پایان نامه بخش بندی ضایعات نوع t2 در دنباله تصاویر flair می باشد که در این راستا از تصاویر پایگاه داده miccai بهره برده ایم. جهت اعتبار سنجی روش پیشنهادی، تصاویر ناحیه بندی شده به روش اتوماتیک با تصاویر ناحیه بندی شده توسط دو فرد متخصص مقایسه شده است. نتایج حاصل نشان می دهد، روش پیشنهادی با کسب رتبه 03/80% برای ضریب dice و همچنین 7661/0 برای نرخ تشخیص درست (ppv) قابلیت این را دارد که با دقت قابل قبولی نسبت به روش های پیشین ضایعات ms را در تصاویر mr تشخیص داده و بخش بندی نماید.

منابع مشابه

روشی جدید جهت بخش بندی ضایعات مالتیپل اسکلروزیس (ms) در تصاویر mr مغزی

بخش بندی ضایعات مالتیپل اسکلروزیس (ms) در تصاویر mr مغزی به منظور کمک به تشخیص و پیگیری این بیماری در سالهای اخیر مورد توجه قرار گرفته است. در این مطالعه از مدل ترکیب گوسی (gmm) برای قطعه بندی ضایعات ms در تصاویر mr استفاده شد. به منظور بهینه سازی gmm از الگوریتم بیشینه سازی امید ریاضی (em) استفاده می شود اما این الگوریتم معمولاً به یک نقطه بهینه محلی همگرا می شود که برای رهایی از گیر افتادن در ...

متن کامل

روشی جدید جهت بخش‌بندی ضایعات مالتیپل اسکلروزیس (MS) در تصاویر MR مغزی

بخش‌بندی ضایعات مالتیپل اسکلروزیس (MS) در تصاویر MR مغزی به منظور کمک به تشخیص و پیگیری این بیماری در سالهای اخیر مورد توجه قرار گرفته است. در این مطالعه از مدل ترکیب گوسی (GMM) برای قطعه‌بندی ضایعات MS در تصاویر MR استفاده شد. به منظور بهینه‌سازی GMM از الگوریتم بیشینه‌سازی امید ریاضی (EM) استفاده می‌شود اما این الگوریتم معمولاً به یک نقطه بهینه محلی همگرا می‌شود که برای رهایی از گیر افتادن در ...

متن کامل

روشی جدید جهت بخش‌بندی ضایعات مالتیپل اسکلروزیس (MS) در تصاویر MR مغزی

بخش‌بندی ضایعات مالتیپل اسکلروزیس (MS) در تصاویر MR مغزی به منظور کمک به تشخیص و پیگیری این بیماری در سالهای اخیر مورد توجه قرار گرفته است. در این مطالعه از مدل ترکیب گوسی (GMM) برای قطعه‌بندی ضایعات MS در تصاویر MR استفاده شد. به منظور بهینه‌سازی GMM از الگوریتم بیشینه‌سازی امید ریاضی (EM) استفاده می‌شود اما این الگوریتم معمولاً به یک نقطه بهینه محلی همگرا می‌شود که برای رهایی از گیر افتادن در ...

متن کامل

ناحیه بندی تومور در تصاویر mr

ناحیه بندی تصاویر mr مغز نقش پر اهمیتی را در سیستم های تشخیص نابهنجاری ها مانند تومور بازی می کند. در این پایان نامه از مدل آماری میدان تصادفی مارکوف به منظور ناحیه بندی بدون ناظر تصاویر mr استفاده شده است. این مدل یک مدل آماری است که مساله ی ناحیه بندی تصویر را به مساله ی برچسب گذاری تبدیل می کند و هدف آن یافتن یک میدان تصادفی برچسب گذاری شده با انرژی بهینه می باشد. به منظور بهبود کارایی روش و...

15 صفحه اول

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

متن کامل

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده مهندسی کامپیوتر

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023